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Abstract. The Ising model, in presence of an external magnetic field, is isomorphic to a model of localized
interacting particles satisfying the Fermi statistics. By using this isomorphism, we construct a general
solution of the Ising model which holds for any dimensionality of the system. The Hamiltonian of the
model is solved in terms of a complete finite set of eigenoperators and eigenvalues. The Green’s function
and the correlation functions of the fermionic model are exactly known and are expressed in terms of a
finite small number of parameters that have to be self-consistently determined. By using the equation of
the motion method, we derive a set of equations which connect different spin correlation functions. The
scheme that emerges is that it is possible to describe the Ising model from a unified point of view where
all the properties are connected to a small number of local parameters, and where the critical behavior is
controlled by the energy scales fixed by the eigenvalues of the Hamiltonian. By using algebra and symmetry
considerations, we calculate the self-consistent parameters for the one-dimensional case. All the properties
of the system are calculated and obviously agree with the exact results reported in the literature.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.30.Fk Fermion systems and electron
gas – 75.10.-b General theory and models of magnetic ordering

1 Introduction

It is really very hard to say something new on the Ising
model. The model, originally proposed by Lenz [1] in 1920,
was exactly solved for the case of an infinite chain by
Ising [2] in 1925. Since then, thousand and thousand of
articles and several books have been published on the sub-
ject. The reason is that the model is very simple, but still
can be considered as the prototype for systems subject to
second order phase transitions and can be effectively used
for studying critical phenomena. Moreover, the model and
its generalizations and modifications can also be used for
studying a large variety of physical systems. We do not
attempt to summarize the enormous work done in these
80 years; it would go well beyond the purpose of this arti-
cle. An excellent historical presentation of the Ising model
can be found in reference [3], although it is old and obvi-
ously not updated. With no pretension of being exhaustive
and complete, we here summarize the principal approaches
used in these 80 years.

A basic tool is the transfer matrix method [4–7]. By
means of this approach, Onsager [8] in 1944 succeed to give
an exact solution of the model for a cubic two-dimensional
lattice in absence of external magnetic field. The theory
of spinors and Lie algebra was used to simplify the On-
sager solution [9,10]. Among the exact results for the two-
dimensional case, the calculation of the magnetization [11]
and the writing of the spin correlation function in the
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form of a Toeplitz determinant [12] have to be mentioned.
Other simplifications of the Onsager solution have been
obtained by means of the Jordan-Wigner transformation
and fermionization methods [13–15]. Different approaches
are based on combinatorial methods [16–18] and pfaffian
methods [19–22]. More recent approaches have seen the
Ising Hamiltonian expressed as a Gaussian Grasmannian
action [23,24]. Along this line, use of operatorial symme-
tries that simplify the algebra of the transfer matrix has
led to the calculation of the partition function for a large
class of lattices [25,26].

Many approximation methods have been used with
the goal of obtaining an expression for the partition func-
tion valid over a large temperature range: mean field the-
ory, Bethe approximation [27], cluster variational meth-
ods [28], Monte Carlo simulations, series expansions. The
spin correlation functions have been studied at the critical
temperature [29] and in the asymptotic region [30,31]. To
study critical phenomena and critical indices, tools like
series expansions [32–34], scaling [35–37], renormalization
group theory [38,39] have been used.

In spite of the tremendous work done, many problems
remain unsolved. The exact partition function in a finite
magnetic field is still unknown for dimensions higher than
one. Very few exact results have been obtained for the
three-dimensional model. There is no exact solution for
the two-layer Ising model either. Most of all, a general
approach which works in all dimensions and under general
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boundary conditions, although in some approximation, is
needed.

In a recent work [40], we have shown that there is a
large class of models which are exactly solvable in terms
of a finite number of parameters that have to be self-
consistently calculated. The purpose of the present pa-
per is to apply the method proposed in reference [40] to
the Ising model and to show that an exact solution of the
model does exist for any dimension. In Section 2, we intro-
duce the Ising model for a d-dimensional cubic lattice and
show that the model is isomorphic to a system of localized
spinless interacting particles, satisfying the Fermi statis-
tics. In Section 3, the Hamiltonian of the latter model is
solved, that is, a complete finite set of eigenoperators and
the relative eigenvalues are determined. Then, as shown
in Section 4, the exact form of the retarded Green’s func-
tion (GF) and of the correlation function (CF) can be
obtained. In Section 5, we derive a set of equations for
determining the charge/spin correlation functions. As the
composite operators do not satisfy a canonical algebra,
the GF, the CF and the charge/spin correlation functions
depend on a set of internal parameters not calculable by
the dynamics. For the one-dimensional case, by means of
the composite operator method [41–43], we calculate these
internal parameters (Sect. 6) and the charge/spin corre-
lation functions (Sect. 7). Although obvious, it is worth
noticing that all the results reproduce the exact solution
known in the literature.

What are the advantages of the present method and
what is new in the context of the Ising model? We present
a new scheme of calculations for treating the model. The
scheme is general and can be applied to any dimension.
In the framework of this scheme we show that the model
is always solvable for all dimensions. The energy spectra
of the system are known. In the one dimensional case we
show that the energy scales determined by the spectra
rule the behavior at the critical temperature. It is reason-
able to expect that this is true also for higher dimensions.
General relations among different spin correlation func-
tions have been obtained. These are exact relations and
might be used to check the consistency of some approx-
imate treatments or numerical calculations. In order to
get quantitative results for the cases of two and three di-
mensions we have to determine a finite small number of
parameters. All the properties of the Ising model, the mag-
netization, the thermodynamical quantities, the spin cor-
relation functions, depend on these parameters that have
to be self-consistently determined. By using algebra and
symmetry considerations we calculate these parameters
for the case d = 1. Extension of the calculations to higher
dimensions is under investigation.

2 The Ising model

The Ising model, in presence of an uniform external mag-
netic field h, is described by the following Hamiltonian

HIsing =
∑

ij

JijS(i)S(j) − h
∑

i

S(i) (1)

S(i) are spin variables, residing on a d-dimensional Bra-
vais lattice of N sites spanned by the vectors Ri = i . The
variables S(i) takes only two values: up or down, or more
simply S(i) = ±1. For a hypercubic lattice of lattice con-
stant a with nearest neighbor interactions, the exchange
matrix Jij is given by

Jij = −2dJαij αij = 1
N

∑
k

eik·(Ri−Rj)α(k)

α(k) = 1
d

d∑
n=1

cos(kna)
(2)

where d is the dimensionality of the system and k runs
over the vectors in the first Brillouin zone. The exchange
constant J can be positive or negative, and accordingly
the coupling will be ferromagnetic or antiferromagnetic.
According to (2), the Hamiltonian (1) can be rewritten as

HIsing = −dJ
∑

i

S(i)Sα(i) − h
∑

i

S(i) (3)

where
Sα(i) =

∑

j

αijS(j). (4)

It is worth to recall that the Ising Hamiltonian (1) is in-
variant under the transformation

S(i) → −S(i) h→ −h. (5)

Let us consider a system of Ne interacting spinless
fermions residing on the same lattice and let c(i) and c†(i)
be the related annihilation and creation operators. These
operators are Heisenberg fields [i = (i, t)] satisfying canon-
ical anticommutation relations

{c(i, t), c†(j, t)} = δij

{c(i, t), c(j, t)} = {c†(i, t), c†(j, t)} = 0.
(6)

As a consequence of the algebra (6), each site can be occu-
pied at most by a single particle. The occupation number
of the site i, ν(i) = c†(i)c(i), takes only the values 0 and 1.
By taking into account two-body interactions, the Hamil-
tonian for such a system reads as

H = −
∑

i

µν(i) +
1
2

∑

ij

V (i, j)ν(i)ν(j) (7)

where µ is the chemical potential and V (i, j) is the po-
tential. This model Hamiltonian can be connected to the
Ising model by defining

ν(i) =
1
2
[1 + S(i)]. (8)

It is clear that

ν(i) = 0 ⇔ S(i) = −1
ν(i) = 1 ⇔ S(i) = +1

(9)
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By substituting (8) into (7) and by considering only a
nearest-neighbor potential we can rewrite the Hamiltonian
(7) in the following form

H = E0 − h
∑

i

S(i) − dJ
∑

i

S(i)Sα(i) (10)

where we defined

E0 = (− 1
2µ+ 1

4V d)N
h = 1

2 (µ− V d)
J = − 1

4V d.

(11)

Hamiltonian (10) is just the Ising Hamiltonian (3) as we
have the equivalence

HIsing = H − E0 (12)

The relation between the partition functions is

ZH = e−βE0ZIsing. (13)

Then, the thermal average of any operator A assumes the
same value in both models

〈A(ν)〉H = 〈A(S)〉Ising . (14)

According to this, we can choose to study either one or
the other model and get both solutions at once. We decide
to put attention to the model Hamiltonian (7), which for
a nearest-neighbor potential reads as

H = −µ
∑

i

ν(i) + V d
∑

i

ν(i)να(i) (15)

where
να(i, t) =

∑

j

αijν(j, t) (16)

The spin-inversion symmetry (5) of the Ising model
(3) corresponds to the particle-hole symmetry exhibited
by the Hamiltonian (15). In particular, we have that the
chemical potential as a function of ν = 〈ν(i)〉 scales as

µ(1 − ν) = 2dV − µ(ν). (17)

3 Composite operators and equations
of motion

It is immediate to see that the charge density operator
ν(i) satisfies the equation of motion

i
∂ν(i)
∂t

= [ν(i), H ] = 0. (18)

Then, standard methods based on the use of equations
of motion and Green’s function (GF) formalism are not
immediately applicable. Indeed, it is easy to check that
the causal propagator 〈T [ν(i)ν(j)]〉 [T is the chronological

operator] and the correlation function 〈ν(i)ν(j)〉 assume
the form

〈T [ν(i)ν(j)]〉 = 〈ν(i)ν(j)〉 =
1
N

∑

k

eik·(Ri−Rj)Γ (k)

(19)
where Γ (k) is the zero frequency function[41] which can-
not be calculated by means of the dynamics1.

Then, in order to solve the Hamiltonian (15) let us
consider the composite operator

ψp(i) = c(i)[να(i)]p−1 {p = 1, 2 · · · · · · }. (20)

This field satisfies the equation of motion

i
∂

∂t
ψp(i) = [ψp(i), H ] = −µψp(i) + 2dV ψp+1(i). (21)

By taking higher-order time derivatives we generate a hi-
erarchy of composite operators. However, we observe that
for p ≥ 1 the number operator ν(i) = c†(i)c(i) satisfies
the following algebra

[ν(i)]p = [c†(i)c(i)]p = ν(i). (22)

Therefore, the hierarchy of composite operators (20) must
close for a certain value of p and we should be able to
derive a finite closed set of eigenoperators of the Hamil-
tonian. To this purpose, on the basis of (22) the following
fundamental property of the field [να(i)]p can be estab-
lished

[να(i)]p =
2d∑

m=1

A(p)
m [να(i)]m (23)

where the coefficients A(p)
m satisfy the relation

2d∑

m=1

A(p)
m = 1. (24)

The proof of equation (23) and the explicit expressions of
the coefficients A(p)

m are given in Appendix A for the cases
d = 1, 2, 3. We now define the composite operator

ψ(d)(i) =





ψ1(i)
ψ2(i)

...
ψ2d+1(i)




=





c(i)
c(i)να(i)

...
c(i)[να(i)]2d




. (25)

After (23), this field is an eigenoperator of the Hamilto-
nian (15)

i
∂

∂t
ψ(d)(i) = [ψ(d)(i), H ] = ε(d)ψ(d)(i) (26)

1 Use of the formula Γ (k) = 1
2

limω→0 ωG(+1)(k, ω), where

G(+1)(k, ω) is the causal propagator defined in terms of
fermionic algebra [41] would lead just to an identity.
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where the (2d+ 1)× (2d+ 1) matrix ε(d), the energy ma-
trix, is defined in Appendix B. It is easy to see that the
eigenvalues E(d)

n of the energy matrix are given by

E(d)
n = −µ+ (n− 1)V n = 1, 2, · · · , 2d+ 1. (27)

The Hamiltonian (15) has been solved since we know a
complete set of eigenoperators and eigenvalues, and we
can proceed to the calculations of observable quantities.
This will be done in the next Sections by using the Green’s
function formalism .

4 Retarded and correlation functions

We define now the thermal retarded Green’s function

G(d)(i, j) =
〈
R[ψ(d)(i)ψ(d)†(j)]

〉

= θ(ti − tj)
〈
{ψ(d)(i), ψ(d)†(j)}

〉
(28)

where 〈· · · 〉 denotes the quantum-statistical average over
the grand canonical ensemble. By introducing the Fourier
transform

G(d)(i, j) =
1
N

∑

k

i
(2π)

×
+∞∫

−∞
dωeik·(Ri−Rj)−iω(ti−tj)G(d)(k, ω) (29)

and by means of the Heisenberg equation (26) we obtain
the equation

[ω − ε(d)]G(d)(k, ω) = I(d)(k) (30)

where I(d)(k) is the Fourier transform of the normalization
matrix, defined as

I(d)(i, j) =
〈
{ψ(d)(i, t), ψ(d)†(j, t)}

〉

=
1
N

∑

k

eik·(Ri−Rj)I(d)(k). (31)

The solution of equation (30) is

G(d)(k, ω) =
2d+1∑

n=1

σ(d,n)(k)

ω − E
(d)
n +iδ

. (32)

The spectral density matrices σ(d,n)
ab (k) are calculated by

means of the formula [41,43]

σ
(d,n)
ab (k) = Ω(d)

an

∑

c

[Ω(d)
nc ]−1I

(d)
cb (k) (33)

where Ω(d)is the (2d+1)× (2d+1) matrix whose columns
are the eigenvectors of the matrix ε(d). The explicit ex-
pressions of Ω(d)are given in Appendix B. The spectral
density matrices σ(d,n)(k) satisfy the sum rule

2d+1∑

n=1

[E(d)
n ]pσ(d,n)(k) = M (d,p)(k) (34)

where M (d,p)(k) are the spectral moments defined as

M (d,p)(k) = F.T.
〈
{(i∂/∂t)p ψ(d)(i, t), ψ(d)†(j, t)}

〉
(35)

F.T. stays for the Fourier transform. It is a consequence
of the theorem proved in reference [44] (see also p. 572
in Ref. [41]) that the spectral density matrices, for d =
1, 2, 3, satisfy the sum rule (34). The explicit expressions
of I(d)(k) and σ(d,n)(k) are given in Appendices C and
D, respectively, for the cases d = 1, 2, 3. The correlation
function

C(d)(i, j) =
〈
ψ(d)(i)ψ(d)†(j)

〉
(36)

can be immediately calculated from (32) by using the spec-
tral theorem and one obtains

C(d)(i, j)

=
1
N

∑

k

1
(2π)

+∞∫

−∞
dωei(Ri−Rj)−iω(ti−tj)C(d)(k, ω) (37)

C(d)(k, ω) = π

2d+1∑

n=1

δ[ω − E(d)
n ]T (d)

n σ(d,n)(k) (38)

with

T (d)
n = 1 + tanh

(
E

(d)
n

2kBT

)
. (39)

Equations (32) and (38) are an exact solution of the model
Hamiltonian (15). One is able to obtain an exact solu-
tion as the composite operators ψp(i) = c(i)[να(i)]p−1

constitute a closed set of eigenoperators of the Hamilto-
nian. However, as stressed in reference [41], the knowl-
edge of the GF is not fully achieved yet. The algebra of
the field ψ(d)(i) is not canonical: as a consequence, the
normalization matrix I(d)(k) in the equation (30) con-
tains some unknown static correlation functions, corre-
lators (see Appendix C for explicit calculations), that
have to be self-consistently calculated. According to the
scheme of calculations proposed by the composite opera-
tor method [41–43] (COM), one way of calculating these
unknown correlators is by specifying the representation
where the GF are realized. The knowledge of the Hamilto-
nian and of the operatorial algebra is not sufficient to com-
pletely determine the GF. The GF refer to a specific rep-
resentation (i.e., to a specific choice of the Hilbert space)
and this information must be supplied to the equations
of motion that alone are not sufficient to completely de-
termine the GF. Usually, the use of composite operators
leads to an enlargement of the Hilbert space by the inclu-
sion of some unphysical states. Since the GF depend on
the unknown correlators, it is clear that the value of these
parameters and the representation are intimately related.
The procedure is the following. We set up some require-
ments on the representation and determine the correlators
in order that these conditions be satisfied. From the alge-
bra it is possible to derive several relations among the
operators. We will call algebra constraints (AC) all possi-
ble relations among the operators dictated by the algebra.
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This set of relations valid at microscopic level must be sat-
isfied also at macroscopic level, when expectations values
are considered. Use of these considerations leads to some
self-consistent equations which will be used to fix the un-
known correlators appearing in the normalization matrix.
An immediate set of rules is given by the equation

〈
ψ(d)(i)ψ(d)†(i)

〉
=

1
N

∑

k

1
2π

+∞∫

−∞
dω C(d)(k, ω) (40)

where the l.h.s. is fixed by the AC and the boundary condi-
tions compatible with the phase under investigation, while
in the r.h.s. the correlation function C(k, ω) is computed
by means of equation of motion [cfr. Eq. (38)].

Another important set of AC can be derived by ob-
serving that there exist some operators, O, which project
out of the Hamiltonian a reduced part

OH = OH0. (41)

WhenH0 andHI = H−H0 commute, the quantum statis-
tical average of the operator O over the complete Hamil-
tonian H must coincide with the average over the reduced
Hamiltonian H0

Tr{Oe−βH} = Tr{Oe−βH0}. (42)

Another relation is the requirement of time transla-
tional invariance which leads to the condition that the
spectral moments, defined by equation (35), must satisfy
the following relation

M
(d,p)
ab (k) = [M (d,p)

ba (k)]∗. (43)

It can be shown that if (43) is violated, then states with a
negative norm appear in the Hilbert space. Of course the
above rules are not exhaustive and more conditions might
be needed.

According to the calculations given in Appendices C
and D, the GF and the correlation functions de-
pend on the following parameters: external parameters
(µ, T, V ), internal parameters (C(d)α

1,1 , C
(d)α
1,2 , · · ·C(d)α

1,2d ),
and (κ(1), κ(1), · · ·κ(2d)), defined as

C(d)α
µ,ν =

〈
ψ(d)α
µ (i)ψ(d)†

ν (i)
〉

(44)

κ(p) = 〈[vα(i)]p〉 . (45)

The parameters C(d)α
µ,ν are determined by means of their

own definitions (44), where the r.h.s. is calculated by
means of (37–38). This equation gives

C(d)α =
1
2

2d+1∑

n=1

T (d)
n

1
N

∑

k

α(k)σ(d,n)(k). (46)

From the results given in the Appendices C and D, we see
that the spectral density matrices have the form

σ(d,n)(k) = Λ
(d,n)
0 + α(k)Λ(d,n)

1 (47)

where the matrices Λ0 and Λ1 do not depend on momen-
tum k. Putting (47) into (46) we obtain

C(d)α =
1
4d

2d+1∑

n=1

T (d)
n Λ

(d,n)
1 (48)

Calculations given in the Appendices C and D show that
the matrices Λ(d,n)

1 are linear combinations of the matrix
elements C(d)α

1,p . Then, equation (48) gives a system of ho-
mogeneous linear equations. The determinant of this sys-
tem is only function of the external parameters µ, T, V .
This function will vanish only if there is a particular rela-
tion among these parameters. Since these parameters are
independent variables the only solution is that all the ma-
trix elements must vanish

C
(d)α
1,p = 0. (49)

The matrices Λ
(d,n)
1 are zero and the correlation func-

tion C(d)(k, ω) does not depend on momentum, as we
expected. In the coordinate space the CF takes the ex-
pression

C(d)(i, j) = δij
1
2

2d+1∑

n=1

TnΛ
(d,n)
0 e−iE(d)

n (ti−tj). (50)

The correlation function depends on 2d internal parame-
ters: κ(1), · · · , κ(2d). In order to determine these parame-
ters, we use the Pauli condition (40) which gives the self-
consistent equations

κ(p) − λ(p) = C
(d)
1,p+1 (p = 0, 1, · · ·2d) (51)

where C(d)
1,p+1 =

〈
ψ

(d)
1 (i)ψ(d)†

p (i)
〉

is calculated by means
of (50). New correlation functions

λ(p) = 〈ν(i)[να(i)]p〉 (52)

appear and the set of self-consistent equations (51) is not
sufficient to determine all unknown parameters. One needs
more conditions. In the case of one-dimensional systems
these extra conditions can be obtained by using the prop-
erty (42).

5 Charge correlations functions

In Sections 3 and 4, we have solved the problem of the
Ising model in terms of a set of local parameters, defined
by (45) and (52). In this section, we want to show how we
can calculate non-local correlation functions. Let us define
the causal Green’s function (for simplicity in this section
we drop the superindex (d))

FC(i, l, j) =
〈
T [ψ(i)ψ†(l)]ν(j)

〉

= θ(ti − tl)
〈
ψ(i)ψ†(l)ν(j)

〉

−θ(tl − ti)
〈
ψ†(l)ψ(i)ν(j)

〉
(53)
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the retarded and advanced functions

FR,A(i, l, j) =
〈
R,A[ψ(i)ψ†(l)]ν(j)

〉

= ±θ[±(ti − tl)]
〈{ψ(i), ψ†(l)}ν(j)〉 (54)

the correlation functions

Dψψ†
(i, l, j) =

〈
ψ(i)ψ†(l)ν(j)

〉

Dψ†ψ(i, l, j) =
〈
ψ†(l)ψ(i)ν(j)

〉 (55)

where ψ(i) is the composite field defined in (25) and we
used the fact the field operator ν(j) does not depend on
time. The Fourier transforms of these quantities read as

FQ(i, l, j) = i
2π

∫
dωe−iω(ti−tl)F (i, l, j;ω)

Dψψ†
(i, l, j) = 1

2π

∫
dωe−iω(ti−tl)Dψψ†

(i, l, j;ω)
(56)

where Q = C,R,A. By means of the equation of motion
(26) we have

(ω − ε)FQ(i, l, j;ω) = J(i, l, j) (57)

(ω − ε)Dψψ†
(i, l, j;ω) = 0

(ω − ε)Dψ†ψ(i, l, j;ω) = 0
(58)

where the matrix J(i, l, j) is defined as

J(i, l, j) =
〈{ψ(i, t), ψ†(l, t)}n(j)

〉
. (59)

The most general solution of equation (57) is

FQ(i, l, j;ω) =
2d+1∑

n=1

[P
τ (n)(i, l, j)
ω − En

−iπδ(ω − En)gQ(n)(i, l, j)] (60)

where

τ
(n)
ab (i, l, j) = Ωan

2d+1∑

c=1

Ω−1
nc Jcb(i, l, j) (61)

while the function gQ(n)(i, l, j) must be determined. P de-
notes the principal value. By recalling the retarded and
advanced nature of FR,A(i, l, j), it is immediate to see
that

gR(n)(i, l, j) = −gA(n)(i, l, j) = τ (n)(i, l, j). (62)

Therefore

FR,A(i, l, j;ω) =
2d+1∑

n=1

τ (n)(i, l, j)
ω − En±iδ

. (63)

The solution of (58) is

Dψψ†
(i, l, j;ω) =

2d+1∑
n=1

δ(ω − En)dψψ
†(n)(i, l, j)

Dψ†ψ(i, l, j;ω) =
2d+1∑
n=1

δ(ω − En)dψ
†ψ(n)(i, l, j)

(64)

where the matrices dψψ
†(n)(i, l, j) and dψ

†ψ(n)(i, l, j) have
to be determined. From the definitions (53)–(55) we can
derive the following exact relations

FR(i, l, j) + FA(i, l, j) = 2FC(i, l, j) − 〈[ψ(i), ψ†(l)]ν(j)
〉

FR(i, l, j) − FA(i, l, j) =
〈{ψ(i), ψ†(l)}ν(j)〉.

(65)
A relation between the two correlation functions
Dψψ†

(i, l, j) and Dψ†ψ(i, l, j) can be established by means
of trace properties. Indeed, it is straightforward to derive
a KMS-like relation

〈
ψ†(l)ψ(i)ν(j)

〉
=
〈
ψ(i, ti − iβ)ψ†(l)ν(j)

〉

+δlj
〈
ψ(i, ti − iβ)ψ†(l)

〉
. (66)

By recalling the definitions (55), this last equations can
be written as

Dψ†ψ(i, l, j;ω) = e−βω[Dψψ†
(i, l, j;ω)+ δljC(i, l;ω)] (67)

where C(i, l;ω) is the fermionic correlation func-
tion [see Eqs. (37–38)]. Therefore, the anticommutator〈{ψ(i), ψ†(l)}ν(j)〉 in (65) can be expressed in terms of
the correlation functions as
〈{ψ(i), ψ†(l)}ν(j)〉 = 1

2π

∫
dωe−iω(ti−tl)

×[(1 + e−βω)Dψψ†
(i, l, j;ω) + δlje

−βωC(i, l;ω)].
(68)

Analogous expression holds for the commutator. By means
of (68) and by recalling that [see Eqs. (37–38)]

(ω − ε)C(i, l;ω) = 0

C(i, l;ω) =
2d+1∑
n=1

δ(ω − En)c(n)(i, l)
(69)

we find that equations (65) have the following form

2d+1∑
n=1

δ(ω − En){gC(n)(i, l, j) − 1
2π [(1 − e−βω)

×dψψ†(n)(i, l, j) − δlje
−βωc(n)(i, l)]} = 0

(70)

2d+1∑
n=1

δ(ω − En){τ (n)(i, l, j) − 1
2π [(1 + e−βω)

×dψψ†(n)(i, l, j) + δlje
−βωc(n)(i, l)]} = 0.

(71)

By recalling that E(d)
n = −µ + (n − 1)V , the solution of

(70) and (71,) is:

dψψ†(n)(i, l, j) =
2π

1 + e−βEn
τ (n)(i, l, j)

− δlje
−βEn

1 + e−βEn
c(n)(i, l) (72)

gC(n)(i, l, j) =
1 − e−βEn

1 + e−βEn
τ (n)(i, l, j)

− δlj
2π

2e−βEn

1 + e−βEn
c(n)(i, l). (73)
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By putting (72) and (73) into (60) and (64) we have

Dψψ†
(i, l, j) =

2d+1∑

n=1

e− iEn(ti−tl)

1 + e−βEn
[τ (n)(i, l, j)

− 1
2π
δlje

−βEnc(n)(i, l)] (74)

Dψ†ψ(i, l, j) =
2d+1∑

n=1

e− iEn(ti−tl)e−βEn

1 + e−βEn
[τ (n)(i, l, j)

+
1
2π
δljc

(n)(i, l)] (75)

FC(i, l, j) =
i

2π

∫
dωe−iω(ti−tl)

2d+1∑

n=1

τ (n)(i, l, j)
1 + e−βEn

×
[

1
ω − En+iδ

+
e−βEn

ω − En−iδ

]

− i
2π
δl,j

∫
dωe−iω(ti−tl)

2d+1∑

n=1

c(n)(i, l)e−βEn

1 + e−βEn

[
1

ω − En+iδ
− 1
ω − En−iδ

]
. (76)

From the study of the fermionic sector we have

c(n)(i, l) =
2π

1 + e−βEn
δilσ

(n) (77)

where σ(n)are the spectral functions given in Appendix D.
Then, at equal time (74) becomes

Dψψ†
(i, l, j) =

2d+1∑

n=1

1
1 + e−βEn

× [τ (n)(i, l, j) − δilδlj
1

1 + eβEn
σ(n)]. (78)

The system (78) gives a system of linear equations
for the quantities Dψψ†

(i, l, j). Since the inhomogeneous
terms in this system are proportional to δil, it is clear
that Dψψ†

(i, l, j) ∝ δil. Then, we will take i = l and we
write

D(i, j) =
〈
ψ(i)ψ†(i)n(j)

〉
. (79)

From (78) we have the system of equations

D(i, j) =
2d+1∑

n=1

1
1 + e−βEn

[τ (n)(i, j) − δij
1

1 + eβEn
σ(n)]

(80)
where

τ
(n)
ab (i, j) = Ωan

2d+1∑
c=1

Ω−1
nc Jcb(i, j)

J(i, j) =
〈
ψ(i)ψ†(i)ν(j)

〉
.

(81)

From its own definition (79) and by using the recurrence
relation ( 23), the matrix D(i, j) has the following struc-
ture.

(i) One dimension

D(1)(i, j) =




D1,1 D1,2 D1,3

D1,2 D1,3 D2,3

D1,3 D2,3 D3,3



 . (82)

D1,p(i, j) = K(p−1)(i, j) − Λ(p−1)(i, j) p = 1, 2, 3

Dp,3(i, j) =
2∑

m=1
A

(p+1)
m D1,m+1(i, j) p = 2, 3.

(83)
(ii) Two dimensions

D(2)(i, j) =





D1,1 D1,2 D1,3 D1,4 D1,5

D1,2 D1,3 D1,4 D1,5 D2,5

D1,3 D1,4 D1,5 D2,5 D3,5

D1,4 D1,5 D2,5 D3,5 D4,5

D1,5 D2,5 D3,5 D4,5 D5,5




(84)

D1,p(i, j) = K(p−1)(i, j) − Λ(p−1)(i, j) p = 1, 2, · · · , 5
Dp,5(i, j) =

4∑
m=1

A
(p+3)
m D1,m+1(i, j) p = 2, 3, · · · , 5.

(85)
(iii) Three dimensions

D(3)(i, j) =





D1,1 D1,2 · · · D1,6 D1,7

D1,2 D1,3 · · · D1,5 D2,7

...
...

...
...

...
D1,6 D1,7 · · · D5,7 D6,7

D1,7 D2,7 · · · D6,7 D7,7




(86)

D1,p(i, j) = K(p−1)(i, j) − Λ(p−1)(i, j) p = 1, 2, · · · , 7
Dp,7(i, j) =

6∑
m=1

A
(p+5)
m D1,m+1(i, j) p = 2, 3, · · · , 7.

(87)
With the definitions

K(p)(i, j) = 〈[να(i)]pν(j)〉
Λ(p)(i, j) = 〈ν(i)[να(i)]pν(j)〉. (88)

Then, we only need to calculate the matrix elements
D1,p(i, j) (p = 1, 2, · · · 2d + 1). The matrix J(i, j) can
be obtained from the normalization matrix I(i, j) =〈{ψ(i, t), ψ†(j, t)}〉, calculated in Appendix C, by means
of the following substitution

κ(p) → K(p)(i, j). (89)

Then, the matrices τ (n)(i, j) have the same expressions of
the spectral matrices σ(n) when the following substitution

Iab → Jab(i, j). (90)

is made. It can be seen that for j = i and j = iα the system
(80) is exactly equivalent to the system (51). Then, it is
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enough to consider the case j �= i, iα. In this case, the
system (80) becomes

D(i, j) =
1
2

2d+1∑

n=1

Tnτ
(n)(i, j) (91)

with Tn given by (39). The system (91) gives a set of exact
relations among the correlation functions. We might think
to solve this system by induction method, since some of
the first correlation functions can be expressed in terms
of the basic parameters κ(p) and λ(p). However, when we
do this, we immediately see that the number of equations
is not sufficient to determine all the correlation functions
and we need more equations. Once again, this can be done
for the one dimensional system, as we shall see in the next
sections.

6 Self-consistent equations
for one-dimensional systems

Until now the analysis has been carried on in complete
generality for a cubic lattice of d dimensions. We now con-
sider one-dimensional systems, and in particular we will
study an infinite chain in the homogeneous phase. For sim-
plicity of notation we shall drop the superindex (d). By
means of (C.6) and (D.1–D.2) the set of equations (51)
gives the linear system

T1 − 2 + (2 − 3T1 + 4T2 − T3)ν
+2(T1 − 2T2 + T3)κ(2) = 0
(2T2 − T3 − 2)ν − 2(T2 − T3)κ(2) + 2λ(1) = 0
(T2 − T3)ν − (2 + T2 − 2T3)κ(2) + 2λ(2) = 0

(92)

where, because of translational invariance, we put

ν = 〈ν(i)〉 = κ(1). (93)

It is immediate to see that for µ = V , the solution of the
first equation in (92) for T > 0 is

ν =
1
2

for µ = V. (94)

This is in agreement with the particle-hole symmetry en-
joyed by the model [see (17)]. Recalling (8) and (11), this
situation corresponds to the zero magnetization of the
Ising model in absence of external magnetic field. Coming
back to general value of µ, it is clear that equations (92)
are not sufficient to specify completely the 4 parameters
ν, κ(2), λ(1), λ(2) and we need another equation. A fourth
equation can be easily obtained by means of the algebra.
We observe that

c†(i)ν(i) = 0 (95)

This relation leads to

c†(i)e−βH = c†(i)e−βH0 (96)

where
H0 = H − 2V ν(i)να(i). (97)

By means of the requirement (42) the correlation function
C1,k =

〈
c(i)c†(i)[να(i)]k−1

〉
can be written as

C1,k

C1,1
=
C

(0)
1,k

C
(0)
1,1

(98)

where
C

(0)
1,k =

〈
c(i)c†(i)[vα(i)]k−1

〉
0

(99)

and 〈· · · 〉0denotes the thermal average with respect to H0.
Let us define the retarded GF

G
(0)
1,k(t− t′) =

〈
R[c(i, t)c†(i, t′)][vα(i)]k−1

〉
0

=
i

2π

+∞∫

−∞
dωe−iω(t−t)G(0)

1,k(ω). (100)

By means of the equation of motion

[c(i), H0] = −µc(i) (101)

we have

G
(0)
1,k(ω) =

〈
[να(i)]k−1

〉
0

ω + µ+iδ
. (102)

Recalling the relation between retarded and correlation
functions, from (102) we obtain

C
(0)
1,k =

〈
[να(i)]k−1

〉
0

1 + eβµ
. (103)

By putting this result into (98) we have

C1,k = C1,1

〈
[να(i)]k−1

〉
0
. (104)

By noting that [να(i)]2can be expressed as [cfr. (A.4)]

[να(i)]2 =
1
2
[να(i) + ν(i1)ν(i2)] (105)

we obtain from (104) the relations

C1,2 = C1,1 〈[να(i)]〉0 (106)

C1,3 =
1
2
[C1,2 + C1,1 〈ν(i1)ν(i2)〉0]. (107)

Now, we observe [45] that H0 describes a system where
the original lattice is divided in two disconnected sublat-
tices (the chains to the left and to the right of the site
i). Then, in H0-representation, the correlation function
which relates sites belonging to different sublattices can
be decoupled:

〈a(j)b(m)〉0 = 〈a(j)〉0 〈b(m)〉0 (108)

for j and m belonging to different sublattices. By using
this property, invariance of H0 under axis reflection and
(106) we can write

〈ν(i1)ν(i2)〉0 = 〈ν(i1)〉0 〈ν(i2)〉0
= [〈να(i)〉0]2 =

[
C1,2

C1,1

]2
. (109)
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By putting (109) into (107), we obtain the following self-
consistent equation among the correlation functions

C1,3 =
1
2
C1,2

(
1 +

C1,2

C1,1

)
. (110)

By means of (37) and (38) and the results given in Ap-
pendices C and D, equation (110) takes the expression

(4T 2
2 − 3T1T3)ν

2 + [T1T3 − 8κ(2)(T 2
2 − T1T3)]ν

+2κ(2)[2κ(2)(T 2
2 − T1T3) − T1T3] = 0.

(111)

This equation together with equations (92) gives a sys-
tem of 4 self-consistent equations for the 4 parameters
ν, κ(2), λ(1), λ(2) as functions of µ, T, V . By solving the set
of linear equations (92) with respect to κ(2), λ(1), λ(2) as
functions of ν, we have

κ(2) =
2 − T1 + ν(−2 + 3T1 − 4T2 + T3)

2(T1 − 2T2 + T3)
(112)

λ(1) =
1

2(T1 − 2T2 + T3)
{ (2 − T1)(T2 − T3) (113)

+ν[T1(2 + T2 − 2T3) + T2(T3 − 6) + 4T3]}
λ(2) =

1
4(T1 − 2T2 + T3)

{ (2 − T1)(2 + T2 − 2T3) (114)

+ν[−4 − 10T2 + T1(6 + T2 − 4T3) + 6T3 + 3T2T3]}.
To calculate the parameter ν let us put (112) into (111)
and solve with respect to ν. We have two roots. One solu-
tion corresponds to an unstable state with negative com-
pressibility and must be disregarded. By picking up the
right root, and by using the relation

T3 =
2T 2

2 (2 − T1)
T1(2 − T2)2 + T 2

2 (2 − T1)
(115)

we find

ν =
1
2

[
1 + (1 − T2)

√
T1

T1 − 2T1T2 + 2T 2
2

]
. (116)

As shown in Appendix E, the solutions (112)-(116) exactly
correspond to the well-known solution of the 1D Ising
model, obtained by means of the transfer matrix method.
We could manipulate the expression (116) and the ones
for κ(2), λ(1) and λ(2), obtained by substituting (116) into
(112–114), in order to reproduce the expressions of the
Ising model, given in Appendix E. However, we prefer to
maintain the present expressions as the following discus-
sion will be more transparent. In Section 3, we have seen
that in the present model, in the one-dimensional case,
there are three energy scales

E1 = −µ
E2 = −µ+ V

E3 = −µ+ 2V.
(117)

At zero temperature, the three functions T1, T2 and T3

are not analytical functions at the points µ = 0, µ = V,
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Fig. 1. The particle density ν is plotted as a function of the
chemical potential at various temperatures for V = −1 (top)
and V = 1 (bottom).

and µ = 2V , respectively, and we expect that the parame-
ters ν, κ(2), λ(1), λ(2) exhibit some discontinuous behavior
at these points. As shown in Figure 1, in the limit T → 0
the particle density ν has a discontinuity at µ = V for the
case of negative V (i.e. J > 0, ferromagnetic coupling) and
two discontinuities at µ = 0 and µ = 2V for the case of
positive V (i.e. J < 0, antiferromagnetic coupling). Here
and in the following, we take |V | = 1: all energies are mea-
sured in units of |V |. In particular, the particle density
increases by increasing µ from zero to one. At zero tem-
perature, in the ferromagnetic case ν is zero for µ < − |V |
and equal to one for µ > − |V |; in the antiferromagnetic
case ν is zero for µ < 0, jumps to 1/2 and exhibits a
plateau, centered at µ = V , in the region 0 < µ < 2V ,
jumps to the value 1 for µ > 2V . The parameter κ(2) has
a behavior similar to ν.

In Figure 2 we give the parameter λ(1) as a function
of µ. For the ferromagnetic case the behavior is similar to
that of ν . Instead, in the antiferromagnetic case λ(1), at
T = 0, exhibits only one discontinuity point at µ = 2V ,
where jumps from zero to one. The parameter λ(2) has a
behavior similar to λ(1). The different behavior exhibited
by the pairs (ν, κ(2)) and (λ(1), λ(2)) for V < 0 is natu-
rally due to the antiferromagnetic correlations, when we
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Fig. 2. The correlation function λ(1) is plotted as a function
of the chemical potential at various temperatures for V = −1
(top) and V = 1 (bottom).

recall that the pair (λ(1), λ(2)) describes a correlation be-
tween two first neighboring sites, while κ(2) describes cor-
relations between two second neighboring sites. Of course
in the point of discontinuity the two limits T → 0 and
µ → µc are not interchangeable. As we shall see in the
next section, the 4 local parameters ν, κ(2), λ(1), λ(2) are
really basic since all the properties of the model are de-
scribed in terms of them. It is worthwhile to note that
some simple relations can be established among the pa-
rameters

2κ(2) − ν − ν2 =
(ν2 − λ(1))2

ν (1 − ν)
(118)

2(κ(2) − λ(2)) = (ν − λ(1)) +
(ν − λ(1))2

1−ν . (119)

The Ising model in one dimension can be described in
terms of only two parameters: ν and λ(1).

7 Charge correlation functions
for one-dimensional systems

The system of equations (91) establishes some re-
lations among the non-local charge correlation func-

tions K(p)(i, j) = 〈[vα(i)]pv(j)〉 and Λ(p)(i, j) =
〈v(i)[vα(i)]pv(j)〉. As already discussed, the number of
equations is not sufficient to determine completely the
charge correlation functions, and one needs more equa-
tions to close the system. In the one-dimensional case a
fourth equation can be easily obtained by algebraic con-
siderations. Recalling that c†(i)e−βH = c†(i)e−βH0 we can
easily derive the following result

Λ(p)(i, j) = K(p)(i, j) − C1,1 〈[vα(i)]pv(j)〉0 . (120)

Now, for j > i+a (because of invariance under axis reflec-
tion we could choose j < i−a as well), using the property
(108)

〈να(i)ν(j)〉0 =
1
2
〈να(i)〉0

×〈ν(j)〉0 +
1
2
〈ν(i+ a)ν(j)〉0 (121)

〈ν(i+ a)ν(i− a)ν(j)〉0 = 〈να(i)〉0 〈ν(i+ a)ν(j)〉0 .
(122)

Therefore, from (120)

Λ(0)(i, j) = K(0)(i, j) − C1,1 〈ν(j)〉0 . (123)

Λ(1)(i, j) = K(1)(i, j) − 1
2
C1,2 〈ν(j)〉0

−1
2
C1,1 〈ν(i+ a)ν(j)〉0 (124)

Λ(2)(i, j) = K(2)(i, j) − 1
2
[K(1)(i, j) − Λ(1)(i, j)]

−1
2
C1,2 〈ν(i+ a)ν(j)〉0 (125)

where we used equation (106). Equations (123) and (124)
give

〈ν(j)〉0 =
1
C1,1

[K(0)(i, j) − Λ(0)(i, j)] (126)

〈ν(i+ a)ν(j)〉0 =
2
C1,1

[K(1)(i, j) − Λ(1)(i, j)]

− C12

C2
1,1

[K(0)(i, j) − Λ(0)(i, j)]. (127)

Putting (127) into (125) we get the fourth self-consistent
equation

Λ(2)(i, j) = K(2)(i, j)

−[
1
2

+
C1,2

C1,1
][K(1)(i, j) − Λ(1)(i, j)]

+
C2

1,2

2C2
1,1

[K(0)(i, j) − Λ(0)(i, j)]. (128)

It is straightforward to verify that (128) is identically sat-
isfied for j = i, while for j = iα coincides with equa-
tion (119).
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By adding (128) to (91), we have the following system
of equations for the non-local spin correlation functions
K(p)(i, j) and Λ(p)(i, j)

2Λ(0)(i, j) − a0K
(1)(i, j) + a1K

(2)(i, j) = a5ν (129)

2Λ(1)(i, j) + a2K
(1)(i, j) − 2a3K

(2)(i, j) = 0 (130)

2Λ(2)(i, j) + a3K
(1)(i, j) − a4K

(2)(i, j) = 0 (131)

Λ(2)(i, j) + p0[K(1)(i, j) − Λ(1)(i, j)]
+p1Λ

(0)(i, j) −K(2)(i, j) = p1ν
(132)

where we put

a0 = (3T1 − 4T2 + T3)
a1 = 2(T1 − 2T2 + T3)
a2 = (2T2 − T3 − 2)

a3 = (T2 − T3)
a4 = (2 + T2 − 2T3)
a5 = (2 − T1)

(133)

p0 = (1
2 + C1,2

C1,1
)

p1 =
C2

1,2

2C2
1,1

(134)

and we used K(0)(i, j) = 〈ν(j)〉 = ν. To calculate for
general |i− j| we proceed by induction.

Let us put i−j = ma and concentrate the attention on
the spin CF Λ(0)(m) = 〈ν(m)ν(0)〉. We start by observing
that

Λ(0)(0) = ν Λ(0)(1) = λ(1) (135)

where the two parameters ν, λ(1) have been calculated in
the fermionic sector. By taking m = 2 we can calculate
from the system (129–132) that

Λ(0)(2) = 2κ(2) − ν. (136)

The results (135–136) and use of the relation (118) show
that Λ(0)(m) for m = 0, 1, 2 can be cast in the form

Λ(0)(m) = ν2 + ν(1 − ν)pm (137)

where the parameter p is defined as

p =
2κ(2) − ν − ν2

λ(1) − ν2
=

λ(1) − ν2

ν−ν2
. (138)

By using the expressions of the basic parameters given in
Section 5, it is possible to check that |p| < 1. Then, we
can introduce the Fourier transform and reexpress (137)
as

Λ(0)(m) = ν2 +Aν(1−ν) a
2π

π/a∫

−π/a

dk
eikma

1 +B cos(ka)
(139)

where

A =
ν−κ(2)

κ(2) − ν2
B = − λ(1) − ν2

κ(2) − ν2
. (140)

Then, the CF Λ(0)(m+ 1) can be calculated as

Λ(0)(m+ 1) = ν2 +Aν(1 − ν)
a

2π

π/a∫

−π/a

dk
eika(m+1)

1 +B cos(ka)

= ν2 + ν(1 − ν)pm+1. (141)

Therefore, equation (137) is valid for any m. Recalling the
definition of Λ(0)(m), we can rewrite (137) under the form

〈ν(m)ν(0〉 − ν2

ν−ν2
= pm. (142)

Also, from (139) we see that the zero frequency function
[cfr. (19)] has the expression

Γ (k) = ν2(2π/a)δ(k) +
Aν(1 − ν)

1 +B cos(ka)
. (143)

By putting the obtained expression of Λ(0)(m) in equa-
tions (129–132), we can solve the system. The solution
gives

K(1)(m) = ν2 +
1
2
ν(1 − ν)(pm−1 + pm+1) (144)

K(2)(m) = κ(2)ν + ν(1 − ν)[
a0

2a1
(pm−1 + pm+1) − 2

a1
pm
]

(145)

Λ(1)(m) = λ(1)ν + ν(1 − ν)

×
[
2a0a3 − a1a2

4a1
(pm−1 + pm+1) − 2a3

a1
pm
]

(146)

Λ(2)(m) = λ(2)ν + ν(1 − ν)

×
[
a0a4 − a1a3

4a1
(pm−1 + pm+1) − a4

a1
pm
]
.

(147)

In Figure 3 we give p as a function of µ for V = −1 and
V = 1 at various temperatures. We see that for negative
V (ferromagnetic case), p is positive and various between
zero and 1. For positive V (antiferromagnetic case), p is
negative and various between −1 and zero. In particular,
for negative V , p tends to 1 at µ = V in the limit T → 0.
Instead, for positive V , p tends to −1 at µ = V in the
limit T → 0. This is seen in Figure 4 where p is plotted
versus T at µ = V = −1 and at µ = V = 1.

Let us now discuss the correlation functions. Λ(0)(m)
is plotted against m for µ = V = −1 [Fig. 5 (top)] and
for µ = V = 1 [Fig. 5 (bottom)] at various temperatures.
We see that when zero temperature is approached a long-
range order of ferromagnetic and antiferromagnetic type
is established, respectively. Also, we can see from (141–
147) that for m → ∞ and T �= 0 (i.e. not at the critical
temperature) the spin correlation functions assume the
ergodic value. At the critical temperature T = 0 we have
breakdown of the ergodicity.



508 The European Physical Journal B

0.0

0.2

0.4

0.6

0.8

1.0

-6 -4 -2 0 2 4

V=-1T=0.1
T=0.3
T=0.5
T=1.0

p

µ

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

-4 -2 0 2 4 6

V=1

T=0.1
T=0.3
T=0.5
T=1.0

p

µ

Fig. 3. The parameter p is plotted as a function of the chemical
potential at various temperatures for V = −1 (top) and V = 1
(bottom).
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Fig. 4. The parameter p is plotted as a function of the tem-
perature at µ = V = −1 and µ = V = 1.

8 Conclusions

The Ising model in presence of an external magnetic field
is isomorphic to a model of localized spinless interacting
particles, satisfying the Fermi statistics. The latter model
belongs to a class of models always solvable, as shown in
reference [40]. On this basis, we have constructed a gen-
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Fig. 5. Λ(0)(m) is plotted against m for µ = V = −1 (top)
and µ = V = 1 (bottom) and various temperature.

eral solution of the Ising model which holds for any dimen-
sionality of the system. The Hamiltonian of the model has
been solved in terms of a complete finite set of eigenopera-
tors and eigenvalues. The Green’s function and the corre-
lation functions of the fermionic model are exactly known
and are expressed in terms of a finite small number of pa-
rameters that have to be self-consistently determined. By
using the equation of the motion method, we have derived
a set of equations which connect different spin correlation
functions. The scheme that emerges is that it is possible to
describe the Ising model from a unified point of view where
all the properties are connected to a small number of local
parameters, and where the critical behavior is controlled
by the energy scales fixed by the eigenvalues of the Hamil-
tonian. The latter considerations have been proved from
a quantitative point of view in the one-dimensional case,
where the equations which determine the self-consistent
parameters and the spin correlation function have been
solved. For d = 1 all the properties of the system have
been calculated and obviously agree with the exact results
reported in the literature. Extension of the calculations to
higher dimensions is under investigation.

After the paper was completed and submitted for pub-
lication, the author learned that approaches to the spin-
1/2 Ising model based on a fermionization of the model
have been previously reported in references [46] and [47].
The author wishes to thank the referee and Prof. L. De
Cesare for putting these papers to his attention. In par-
ticular, in reference [46], Tyablikov and Fedyanin showed
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that the chain of equations for the double-time GF closes
and the number of equations is determined only by the
co-ordination number, independently by the dimensional-
ity. This conclusion agrees with the results given in Sec-
tions 3 and 4. In order to close the set of equations for
the fermionic correlation functions in the one-dimensional
case, the authors of reference [46] assumed ergodicity and
solved the system, obtaining the exact solution of the 1D
Ising model for an infinite chain. It should be remarked
that ergodicity breaks down for finite systems and at the
critical points. Kalashnikov and Fradkin in reference [47]
used the spectral density method [48] to derive a system of
equations for the correlation functions; also in this case the
approach is valid for any dimension. However, the number
of equations is less than the number of correlation func-
tions.

Appendix A: Algebraic relations

As mentioned in Section 3, the number density operator
ν(i) = c†(i)c(i) satisfies the algebra

νp(i) = ν(i) p ≥ 1. (A.1)

From this algebra an important relation can be derived.
for the operator

να(i) =
∑

j

αijν(j) =
1
2d

2d∑

m=1

ν(im) (A.2)

where im are the first neighbors of the site i. We shall
discuss separately the cases of different dimensions.

A.1 One dimension

We start from the equation

[να(i)]p =
1
2p

p∑

m=0

(
p

m

)
ν(i1)p−mν(i2)m. (A.3)

After subtracting the terms m = 0 and m = p, we can use
the algebraic relation (A.1) to obtain

[να(i)]p =
1
2p

[2να(i) + apν(i1)ν(i2)] (A.4)

with

ap =
p−1∑

m=1

(
p

m

)
= 2p − 2. (A.5)

From (A.4), by putting p = 2 we obtain

ν(i1)ν(i2) = 2[να(i)]2 − να(i). (A.6)

By substituting (A.6) into (A.4) we have the recurrence
rule

[να(i)]p =
2∑

m=1

A(p)
m [να(i)]m (A.7)

Table 1.

p A
(p)
1 A

(p)
2

1 1 0

2 0 1

3 − 1
2

3
2

4 − 3
4

7
4

5 − 7
8

15
8

6 − 15
16

31
16

where

A
(p)
1 =

1
2p

(2 − ap) = 22−p − 1 (A.8)

A
(p)
2 =

1
2p

2ap = 2(1 − 21−p). (A.9)

We note that the coefficients A(p)
m satisfy the relation

2∑

m=1

A(p)
m = 1. (A.10)

In Table 1 we give the values of the A(p)
m ’s for 1 ≤ p ≤ 6.

A.2 Two dimensions

We start from the equation

[να(i)]p =
1
4p

p∑

m=0

(
p

m

)
ν(i1)p−m

m∑

n=0

(
m

n

)

× ν(i2)m−n
n∑

l=0

(
n

l

)
ν(i3)n−lν(i4)l. (A.11)

By proceeding as in the case of one dimension, use of the
algebraic relation (A.1) leads to

[να(i)]p =
1
4p

4∑

m=1

b(p)m Zm (A.12)

where the operators Zm are defined as

Z1 = 4να(i)
Z2 = ν(i1)ν(i2) + ν(i1)ν(i3) + ν(i1)ν(i4)
+ν(i2)ν(i3) + ν(i2)ν(i4) + ν(i3)ν(i4)
Z3 = ν(i1)ν(i2)ν(i3) + ν(i1)ν(i2)ν(i4)
+ν(i1)ν(i3)ν(i4) + ν(i2)ν(i3)ν(i4)
Z4 = ν(i1)ν(i2)ν(i3)ν(i4)

(A.13)
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Table 2.

p A
(p)
1 A

(p)
2 A

(p)
3 A

(p)
4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 − 3
32

25
32

− 35
16

5
2

6 − 15
64

119
64

− 75
16

65
16

7 − 195
512

1505
512

− 1799
256

175
32

8 − 525
1024

3985
1024

− 1155
128

1701
256

and the coefficients b(p)m have the expressions

b
(p)
1 = 4

b
(p)
2 =

p−1∑
m=1

(
p

m

)
= 2p − 2

b
(p)
3 =

p−1∑
m=2

(
p

m

)
m−1∑
n=1

(
m

n

)
= 3(1 − 2p + 3p−1)

b
(p)
4 =

p−1∑
m=3

(
p

m

)
m−1∑
n=2

(
m

n

)
n−1∑
l=1

(
n

n

)

= 4(−1 + 3 · 2p−1 − 3p + 4p−1).

(A.14)

By solving the system (A.12) with respect to variables Zm,
we can obtain the recurrence rule

[να(i)]p =
4∑

m=1

A(p)
m [να(i)]m (A.15)

where the coefficients A(p)
m are defined as

A
(p)
1 = 41−p − 21−2pb

(p)
2 + 1

341−pb(p)3 − 4−pb(p)4

A
(p)
2 = 23−2pb

(p)
2 − 23−2pb

(p)
3 + 11

3 21−2pb
(p)
4

A
(p)
3 = 1

325−2pb
(p)
3 − 42−pb(p)4

A
(p)
4 = 1

325−2pb
(p)
4 .

(A.16)

We note that for all p
4∑

m=1

A(p)
m = 1. (A.17)

In Table 2 we give the values of the A(p)
m ’s for 1 ≤ p ≤ 8.

A.3 Three dimensions

We start from the equation

[να(i)]p =
1
6p

p∑

m=0

(
p

m

)
ν(i1)p−m

m∑

n=0

(
m

n

)

× ν(i2)m−n
n∑

l=0

(
n

l

)
ν(i3)n−l (A.18)

×
l∑

k=0

(
l

k

)
ν(i4)l−k

k∑

q=0

(
k

q

)
ν(i5)k−qν(i6)q.

Because of the algebraic relations (A.1) we obtain

[να(i)]p =
1
4p

6∑

m=1

b(p)m Zm (A.19)

where the operators Zm are defined as

Z1 = 6να(i) (A.20)
Z2 = ν1ν2 + ν1ν3 + ν2ν3+ν1ν4 + ν2ν4 + ν3ν4

+ν1ν5+ν2ν5 + ν3ν5+ν4ν5 +ν1ν6

+ν2ν6 + ν3ν6 + ν4ν6 + ν5ν6 (A.21)
Z3 = ν1ν2ν3 + ν1ν2ν4 + ν1ν3ν4 + ν2ν3ν4 + ν1ν2ν5

+ν1ν3ν5 + ν2ν3ν5 + ν1ν4ν5 + ν2ν4ν5 + ν3ν4ν5

+ν1ν2ν6 + ν1ν3ν6 + ν2ν3 ν6 + ν1ν4ν6 + ν2ν4ν6

+ν3ν4ν6 + ν1ν5ν6 + ν2ν5 ν6 + ν3ν5ν6 + ν4ν5ν6

(A.22)
Z4 = ν1ν2ν3ν4 + ν1ν2ν3ν5 + ν1ν2ν4ν5 + ν1ν3ν4ν5

+ν2ν3ν4ν5 + ν1ν2ν3ν6 + ν1ν2ν4ν6 + ν1ν3ν4ν6

+ν2ν3ν4ν6 + ν1ν2ν5ν6 + ν1ν3ν5ν6 + ν2ν3ν5ν6

+ν1ν4ν5ν6 + ν2ν4ν5ν6 + ν3ν4ν5ν6 (A.23)
Z5 = ν1ν2ν3ν4ν5 + ν1ν2ν3ν4ν6 + ν1ν2ν3ν5ν6

+ν1ν2ν4ν5ν6 + ν1ν3ν4ν5ν6 + ν2ν3ν4ν5ν6

Z6 = ν1ν2ν3ν4ν5ν6 (A.24)

and the new coefficients b(p)m (p = 5, 6) have the expressions

b
(p)
5 =

p−1∑
m=2

(
p

m

)
m−1∑
n=1

(
m

n

)
ap−mam−n

= 5(1 − 2p+1 + 2 · 3p − 4p + 5p−1)

b
(p)
6 =

p−1∑
m=2

(
p

m

)
m−1∑
n=1

(
m

n

)
ap−mam−nan

= −6 + 15 · 2p + 23+2p − 20 · 3p + 7 · 4p − 6 · 5p + 6p.
(A.25)

By solving the system (A.19) with respect to variables Zm,
we can obtain the recursion rule

[να(i)]p =
6∑

m=1

A(p)
m [να(i)]m (A.26)

where the coefficients A(p)
m are defined as

A
(p)
1 = 1

6p [6 − 3b(p)2 + 2b(p)3 − 3
2b

(p)
4 + 6

5b
(p)
5 − b

(p)
6 ]

A
(p)
2 = 1

6p [18b(p)2 − 18b(p)3 + 33
2 b

(p)
4 − 15b(p)5 + 137

10 b
(p)
6 ]

A
(p)
3 = 1

6p [36b(p)3 − 54b(p)4 + 63b(p)5 − 135
2 b

(p)
6 ]

A
(p)
4 = 1

6p [54b(p)4 − 108b(p)5 + 153b(p)6 ]
A

(p)
5 = 1

6p [3245 b
(p)
5 − 162b(p)6 ]

A
(p)
6 = 1

6p
324
5 b

(p)
6 .

(A.27)
We note that for all p

6∑

m=1

A(p)
m = 1. (A.28)

In Table 3 we give the values of the A(p)
m ’s for 1 ≤ p ≤ 10.
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Table 3.

p A
(p)
1 A

(p)
2 A

(p)
3 A

(p)
4 A

(p)
5 A

(p)
6

1 1 0 0 0 0 0

2 0 1 0 0 0 0

3 0 0 1 0 0 0

4 0 0 0 1 0 0

5 0 0 0 0 1 0

6 0 0 0 0 0 1

7 − 5
324

49
216

− 203
162

245
172

− 175
36

7
2

8 − 35
648

1009
1296

− 2695
648

13811
1296

− 245
18

133
18

9 − 665
5832

6307
3888

− 98915
11664

9065
432

− 10913
432

49
4

10 − 245
1296

62167
23328

− 53375
3888

774575
23328

− 4165
108

7609
432

Appendix B: The energy matrix

The energy matrix ε(d), defined by equation (26) can be
immediately calculated by means of the equation of mo-
tion (21) and the recurrence rule (23) [see Tabs. 1, 2, 3].
The matrix Ω(d) is defined as the matrix whose columns
are the eigenvectors of the matrix ε(d). In this Appendix
we report the expressions of ε(d) and Ω(d) for the various
dimensions.

B.1 One dimension

ε(1) =




−µ 2V 0
0 −µ 2V
0 −V 3V − µ



 Ω(1) =




1 22 1
0 2 1
0 1 1



 .

(B.1)

B.2 Two dimensions

ε(2) =





−µ 4V 0 0 0
0 −µ 4V 0 0
0 0 −µ 4V 0
0 0 0 −µ 4V
0 − 3

8V
25
8 V − 35

4 V 10V − µ




(B.2)

Ω(2) =





1 44 24 (4
3 )4 1

0 43 23 (4
3 )3 1

0 42 22 (4
3 )2 1

0 4 2 (4
3 ) 1

0 1 1 1 1




. (B.3)

B.3 Three dimensions

ε(3) =





−µ 6V 0 0 0 0 0
0 −µ 6V 0 0 0 0
0 0 −µ 6V 0 0 0
0 0 0 −µ 6V 0 0
0 0 0 0 −µ 6V 0
0 0 0 0 0 −µ 6V
0 − 5

54V
49
36V − 203

27 V
245
12 V − 175

6 V 21V − µ





(B.4)

Ω(3) =





1 66 36 26
(

3
2

)6 ( 6
5

)6 1
0 65 35 25

(
3
2

)5 ( 6
5

)5 1
0 64 34 24

(
3
2

)4 ( 6
5

)4 1
0 63 33 23

(
3
2

)3 ( 6
5

)3 1
0 62 32 22

(
3
2

)2 ( 6
5

)2 1
0 6 3 2

(
3
2

) (
6
5

)
1

0 1 1 1 1 1 1





. (B.5)

Appendix C: The normalization matrix

We recall the definition of the normalization matrix

I(d)(i, j) =
〈
{ψ(d)(i, t), ψ(d)†(j, t)}

〉

=
1
N

∑

k

eik·(Ri−Rj)I(d)(k). (C.1)

It is straightforward to see that use of the hermiticity con-
dition (43 ) leads to the fact that we have to calculate
only the matrix elements I(d)

1,m(k) (m = 1, 2, · · ·2d + 1).
The calculations of these is very easy when one observes
the following anticommutating rule

{c(i, t)[να(i)]p, c†(j, t)} = δij[να(i)]p

−
p∑

n=1
(−1)n 1

(2d)n−1

(
p

n

)
αijc(i, t)[να(i)]p−nc†(j, t).

(C.2)
By taking the expectation value of (C.2) we obtain in mo-
mentum space

I
(d)
1,m(k) = κ(m−1) − α(k)

m−1∑

n=1

(−1)n

× 1
(2d)n−1

(
m− 1
n

)
C

(d)α
1,m−n (C.3)

with the definitions

C(d)α =
〈
ψ(d)α(i)ψ(d)†(i)

〉
κ(p) = 〈[να(i)]p〉. (C.4)
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C.1 One dimension

I(1)(k) =




I
(1)
1,1 I

(1)
1,2 I

(1)
1,3

I
(1)
1,2 I

(1)
1,3 I

(1)
2,3

I
(1)
1,3 I

(1)
2,3 I

(1)
3,3



 (C.5)

where

I
(1)
1,1 (k) = 1

I
(1)
1,m(k) = κ(m−1) − α(k)

m−1∑
n=1

(−1)n 1
(2)n−1

×
(
m− 1
n

)
C

(d)α
1,m−n (m = 2, 3)

I
(1)
m,3(k) =

2∑
n=1

A
(m+1)
n I

(1)
1,n+1(k) (m = 2, 3).

(C.6)

C.2 Two dimensions

I(2)(k) =





I
(2)
1,1 I

(2)
1,2 I

(2)
1,3 I

(2)
1,4 I

(2)
1,5

I
(2)
1,2 I

(2)
1,3 I

(2)
1,4 I

(2)
1,5 I

(2)
2,5

I
(2)
1,3 I

(2)
1,4 I

(2)
1,5 I

(2)
2,5 I

(2)
3,5

I
(2)
1,4 I

(2)
1,5 I

(2)
2,5 I

(2)
3,5 I

(2)
4,5

I
(2)
1,5 I

(2)
2,5 I

(2)
3,5 I

(2)
4,5 I

(2)
5,5




(C.7)

where

I
(2)
1,1 (k) = 1

I
(2)
1,m(k) = κ(m−1) − α(k)

m−1∑
n=1

(−1)n 1
(4)n−1

×
(
m− 1
n

)
C

(d)α
1,m−n (m = 2, · · · 5)

I
(2)
m,5(k) =

4∑
n=1

A
(m+3)
n I

(2)
1,n+1(k) (m = 2, · · · 5).

(C.8)

C.3 Three dimensions

I(3)(k) =





I
(3)
1,1 I

(3)
1,2 I

(3)
1,3 I

(3)
1,4 I

(3)
1,5 I

(3)
1,6 I

(3)
1,7

I
(3)
1,2 I

(3)
1,3 I

(3)
1,4 I

(3)
1,5 I

(3)
1,6 I

(3)
1,7 I

(3)
2,7

I
(3)
1,3 I

(3)
1,4 I

(3)
1,5 I

(3)
1,6 I

(3)
1,7 I

(3)
2,7 I

(3)
3,7

I
(3)
1,4 I

(3)
1,5 I

(3)
1,6 I

(3)
1,7 I

(3)
2,7 I

(3)
3,7 I

(3)
4,7

I
(3)
1,5 I

(3)
1,6 I

(3)
1,7 I

(3)
2,7 I

(3)
3,7 I

(3)
4,7 I

(3)
5,7

I
(3)
1,6 I

(3)
1,7 I

(3)
2,7 I

(3)
3,7 I

(3)
4,7 I

(3)
5,7 I

(3)
6,7

I
(3)
1,7 I

(3)
2,7 I

(3)
3,7 I

(3)
4,7 I

(3)
5,7 I

(3)
6,7 I

(3)
7,7





(C.9)

where

I
(3)
1,1 (k) = 1

I
(3)
1,m(k) = κ(m−1) − α(k)

m−1∑
n=1

(−1)n 1
(6)n−1

×
(
m− 1
n

)
C

(d)α
1,m−n (m = 2, · · · 7)

I
(3)
m,7(k) =

6∑
n=1

A
(m+5)
n I

(3)
1,n+1(k) (m = 2, · · · 7).

(C.10)

Appendix D: The spectral matrices

The spectral density matrices σ(d,n)
ab (k) can be immedi-

ately calculated by means of the knowledge of the matrices
Ω(d) and I(d) through equation (33).

D.1 One dimension

σ(1) = Σ1




1 0 0
0 0 0
0 0 0



 σ(2) = Σ2




1 2−1 2−2

2−1 2−2 2−3

2−2 2−3 2−4





σ(3) = Σ3




1 1 1
1 1 1
1 1 1



 (D.1)

where
Σ1 = I1,1 − 3I1,2 + 2I1,3
Σ2 = 4(I1,2 − I1,3)
Σ3 = −I1,2 + 2I1,3.

(D.2)

D.2 Two dimensions

σ(1) = Σ1





1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




(D.3)

σ(2) = Σ2





1 4−1 4−2 4−3 4−4

4−1 4−2 4−3 4−4 4−5

4−2 4−3 4−4 4−5 4−6

4−3 4−4 4−5 4−6 4−7

4−4 4−5 4−6 4−7 4−8




(D.4)

σ(3) = Σ3





1 2−1 2−2 2−3 2−4

2−1 2−2 2−3 2−4 2−5

2−2 2−3 2−4 2−5 2−6

2−3 2−4 2−5 2−6 2−7

2−4 2−5 2−6 2−7 2−8




(D.5)

σ(4) = Σ4





1
(

4
3

)−1 ( 4
3

)−2 ( 4
3

)−3 ( 4
3

)−4

(
4
3

)−1 ( 4
3

)−2 ( 4
3

)−3 ( 4
3

)−4 ( 4
3

)−5

(
4
3

)−2 ( 4
3

)−3 ( 4
3

)−4 ( 4
3

)−5 ( 4
3

)−6

(
4
3

)−3 ( 4
3

)−4 ( 4
3

)−5 ( 4
3

)−6 ( 4
3

)−7

(
4
3

)−4 ( 4
3

)−5 ( 4
3

)−6 ( 4
3

)−7 ( 4
3

)−8




(D.6)

σ(5) = Σ5





1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




(D.7)
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with

Σ1 = I1,1 − 1
3 (25I1,2 − 70I1,3 + 80I1,4 − 32I1,5)

Σ2 = 16
3 (3I1,2 − 13I1,3 + 18I1,4 − 8I1,5)

Σ3 = −4(3I1,2 − 19I1,3 + 32I1,4 − 16I1,5)
Σ4 = 16

3 (I1,2 − 7I1,3 + 14I1,4 − 8I1,5)
Σ5 = − 1

3 (3I1,2 − 22I1,3 + 48I1,4 − 32I1,5).

(D.8)

D.3 Three dimensions

σ(1) = Σ1





1 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0




(D.9)

σ(2) = Σ2





1 6−1 · · · 6−6

6−1 6−2 · · · 6−7

...
...

...
...

6−6 6−7 · · · 6−12




(D.10)

σ(3) = Σ3





1 3−1 · · · 3−6

3−1 3−2 · · · 3−7

...
...

...
...

3−6 3−7 · · · 3−12




(D.11)

σ(4) = Σ4





1 2−1 · · · 2−6

2−1 2−2 · · · 2−7

...
...

...
...

2−6 2−7 · · · 2−12




(D.12)

σ(5) = Σ5





1
(

3
2

)−1 · · · ( 3
2

)−6

(
3
2

)−1 ( 3
2

)−2 · · · ( 3
2

)−7

...
...

...
...(

3
2

)−6 ( 3
2

)−7 · · · ( 3
2

)−12




(D.13)

σ(6) = Σ6





1
(

6
5

)−1 · · · ( 6
5

)−6

(
6
5

)−1 ( 6
5

)−2 · · · ( 6
5

)−7

...
...

...
...(

6
5

)−6 ( 6
5

)−7 · · · ( 6
5

)−12




(D.14)

σ(7) = Σ7





1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1




(D.15)

here

Σp =
7∑

m=1

B(p)
m I

(3)
1,m. (D.16)

The coefficients B(p)
m are given in Table 4.

Table 4.

p B
(p)
1 B

(p)
2 B

(p)
3 B

(p)
4 B

(p)
5 B

(p)
6 B

(p)
7

1 1 − 147
10

406
5

− 441
2

315 − 1134
5

324
5

2 0 36 − 1566
5

1044 −1674 1296 − 1944
5

3 0 −45 1053
2

− 4149
2

3699 −3078 972

4 0 40 −508 2232 −4356 3888 −1296

5 0 − 45
2

297 − 2763
2

2889 −2754 972

6 0 36
5

− 486
5

468 −1026 5184
5

− 1944
5

7 0 −1 137
10

− 135
2

153 −162 324
5

Appendix E: Relations between the Ising
and spinless model

In this Appendix, we want to recall the main results of the
Ising model and establish the relations between the two
models. For an infinite chain the simplest method is the
use of the transfer matrix method. The details of calcula-
tions are well known and can be found in many textbooks.
For example, we refer the reader to references [49–51]. The
magnetization per site is given by

〈S(i)〉 =
sinh(βh)√

sinh2(βh) + e−4βJ

. (E.1)

The two-point correlation function 〈S(i)S(i+ j)〉 has the
expression

〈S(i)S(i+ j)〉= 〈S(i)〉2 + (1 − 〈S(i)〉2)pj (E.2)

where

p =
γ(2)

γ(1)
(E.3)

γ(1) and γ(2) are the eigenvalues of the transfer matrix

γ(1) = eβJ
[
cosh(βh) +

√
sinh2(βh) + e−4βJ

]

γ(2) = eβJ
[
cosh(βh) −

√
sinh2(βh) + e−4βJ

]
.

(E.4)

The three-point correlation function is given by [52]

〈S(i)S(i+ j)S(i+ j + r)〉 = 〈S(i)〉3
+ 〈S(i)〉 [1 − 〈S(i)〉2](pj + pr − pj+r).

(E.5)

The relations between the Ising and fermionic models
are

h = 1
2 (µ− V d)

J = − 1
4V d

(E.6)

〈ν(i)〉=
1
2
[1 + 〈S(i)〉] (E.7)

λ(1) =
1
4
[1 + 2 〈S(i)〉 + 〈S(i)S(i+ a)〉] (E.8)

κ(2) =
1
8
[3 + 4 〈S(i)〉 + 〈S(i)S(i+ 2a)〉] (E.9)
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λ(2) =
1
16

[3 + 7 〈S(i)〉 + 4 〈S(i)S(i+ a)〉
+ 〈S(i)S(i+ 2a)〉+ 〈S(i)S(i+ a)S(i+ 2a)〉] (E.10)

By recalling (116) and by means of (E.7), the magne-
tization in the fermionic model has the expression

〈S(i)〉 = (1 − T2)

√
T1

T1 − 2T1T2 + 2T 2
2

(E.11)

By observing that T1 and T2 can be expressed as

T1 = 1 − tanh
(
βµ
2

)
= 2e−2βh

e−2βh+e−4βJ

T2 = 1 − tanh
(
β(µ−V )

2

)
= 1 − tanh(βh) = 2

e2βh+1

(E.12)
it is straightforward to see that (E.11) is the same as (E.1).
In the fermionic model, by means of (142), we have

〈ν(i)ν(i+ j)〉 − ν2

ν − ν2
=

〈S(i)S(i+ j)〉 − 〈S(i)〉2
1 − 〈S(i)〉2 = pj

(E.13)
where the parameter p is expressed in terms of ν and λ(1)

by means of (138). By using (113) and (116), and by re-
calling (115) and (E.12), it is easy to see that the expres-
sion of p, given by (138) is exactly equal to the expres-
sion (E.3). Then, the two-point correlation function of the
fermionic model exactly agree with the expression (E.2)
of the Ising model. The parameters κ(2), λ(1) and λ(2) can
be calculated in the fermionic model by putting (116) into
(112–114), and in the Ising model by means of (E.8–E.10).
After lengthy, but straightforward, calculations, using the
relations (115) and (E.12), it is possible to show that there
is an exact agreement.
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